e g

W0

e ey

PR a0 R

b3

‘_.-.f—'ﬁ

NASA Technical Memorandum 102036
ICOMP-89-11

On the Equivalence of a Class of Inverse
Decomposition Algorithms for Solving
Systems of Linear Equations

Nai-kuan Tsao
Wayne State University
Detroit, Michigan

and Institute for Computational Mechanics in Propulsion
Lewis Research Center
Cleveland, Ohio

(NASA-TM~102036) ON THE EQUIVALENCE OF A N89-24865

- CLASS OF INVERSE DECOMPOSITION ALGORITHMS

FOR SOLVING SYSTEMS OF LINEAR EQUAT IONS

(NASA,

Levwis Research Center) 28 pCSCL 12aA Unclas
G3/64 0210306

May 1989

LEWIS RESEARCH CENTER

ICOMP

CASE WESTERN
U\ RESERVE UNIVERSITY

On the Equivalence of a Class of Inverse Decomposition Algorithms

for Solving Systems of Linear Equations

Nai-kuan Tsao*
Wayne State University
Detroit, Michigan

and Institute for Computational Mechanics in Propulsion
Lewis Research Center
Cleveland, Ohio 44135

Summa[_y

A class of direct inverse decomposition algorithms for solving system of linear equations is
presented. Their behavior in the presence of round-off errors is analyzed. It is shown that undcr
some mild restrictions on their implementation, the class of direct inverse decomposition algorithms

presented are equivalent in terms of our error complexity measures.

*This work was supported in part by the Space Act Agreement C99066G while the author was visiting
ICOMP, NASA Lewis Research Center.

1. Introduction

Given a system of linear equations

Ax = b,
where
a4 42 - 4N by X1
@ Gy - BN by o)
A = ° ° ‘ y b = ° N x = ° ,
ay| uy - ANN by Xy
the solution vector x can be found as
x=4""b

provided A is non-singular. Using direct methods the 4! is usually decomposed as a product of
elementary matrices which reduces the original 4 to an identity matrix. This is true whether the
method selected is of the Gaussian Elimination type which triangularize 4 or the Gauss-Jordan type
in which diagonalization of A4 takes place. In actual computation the décomposed A~ 1s of course
only an approximation to the exact one due to round-off errors incurred during the execution of
the computational steps of the specific method chosen. Since there are many variations in this class

of decomposition methods, one wonders whether one variation is “better” than the other in terms

of accuracy of the computed solution.

In this paper we show, under mild restrictions on the implementation of some algorithms,
that all decomposition methods are “equivalent” in terms of our error complexity measures. Some

preliminary results are presented in Section 2. The classification and analysis of decomposition

methods are given in Section 3.

2. Some Preliminary Results

Given a normalized floating-point system with a ¢-digit base f mantissa, the following

cquations can be assumed to facilitate the error analysis of general arithmatic expressions using only
+, —, %, or [operations[1]:

(2.1 SUxt#y) = (x#PA, #e{+,— %/}

where

Al <1+ < —l'ﬂ]—t for rounded operations
<l+wu usq 2

ﬂ'_t for chopped operations

and x and y are given machine floating-point numbers and f4(.) is used to denote the computed

floating-point result of the given argument. We shall call A the unit A -factor.

In general one can apply (2.1) repeatedly to a sequence of arithmetic steps, and the computed

result z can be expressed as

Az,)

Z Zni A% (Z)

z .
i — _f_ = =1
22 25200

Z V4 ded(zdj)

J=1

where each z, or z,, is an exact product of error-free data, and A* stands for the product of k pos-
sibly different A-factors. We should emphasize that all common factors between the numerator and
denominator should have been factored out before z can be expressed in its final rational form of
(2.2). Following [2], we shall henceforth call such an exact product of error-free data a basic term,
or simply a term. Thus 1(z,) or A(z,) is then the total number of such terms whose sum constitutes
z, or z,, respectively, and o(z,) or o(z,) gives the possible number of round-off occurrences during

the computational process. As an example, consider the solution of two linear equations in two

variables as follows:

ax) + bxy=c

dx) +tex,=f
The exact solution x, can be found as
d
« Ja¥c
x2 = d
e~ *b

The computed x, is the result of the following expression:

Xy = fwy[wy), wy =fUf = 1), wy=flle—¢),
Si=/Kd) %), e, =[Ud, ¥b), d, =fl(d]a).
Applying (2.1) repeatedly to the above expression, we have

d
y/ "'—ag“A3 _ afA—ch3

eA—%llA3 aeA — dbA>

x2=

which is of the form of (2.2). We define the following two measures:

maximum error complexity:

(2.3) o(zy) = max o(zp), o(zg) = X o(zy)

cumulative error complexity:

Az Az
2.4) s(z,) = Za(zm-), s(z,) = Za(zdj).
=1 J=1

Different algorithms used to compute the same z can then be compared using the above error

complexity mcasures and the number of basic terms created by each algorithm.

For convenience we will use Z, and Z, to represent the 3-tuples {A(z,), 6(z,), s(z;)} and

{A(z), 6(2,), 5(z,)} , respectively, so that the computed z of (2.2) is fully characterized by

Ny
I
ggu‘:m

In division-free computations any computed z will have only the numerator part z,. The

following lemma is useful in dealing with intermediate computed results:

Lemma 2.1 Given x and y with their associated X, and j,,
(1) if z=xyp, then
Zp = Xplp = PuXp = {Ax)AWp), 0(xp) + 0(Vn), S(X,)A5) + Alx)s(n)}

(1) if z=x+p, then
Z, =X, + Jp = Jp + X = {A(x,) + A(vy), max(o(x,), 6(v,), S(x,) + ()}

Proof. The results can be obtained easily by expressing x and y as
Mx,) A¥,)

x= Z xniAa(xmi)’ y= ZynjAo'(}’nj)
i=1 Jj=1

and applying (2.3), (2.4) and the definition of 1(z,) to find Z,. Q.E.D.

The unit A-factor is then defined as

(2.5a) A={1,11}.

One can obtain casily using Lemma 2.1 to get

(2.5b) A = {1,id).
For general floating-point computations, we have the following lemma:

Iemma 2.2 Given x and y with their associated
X, {'l(xn)1 o(X,), s(xp)}

n

===

Xy {Axg), o(xg)s s(xz)}

{An)s o), s(n)}
(202, o0, s}

P _
v ¥ 7

(i) if z= fl(x + ») and there is no common factors between x, and y,, then
s B _ X FnA + 77
Z4 XPa
where
Az) = Axp)Aa) + ADR)A(Xa),
Mzg) = Ux)Aa),
o(z,) = 1 + max(o(x,) + o(yy), o(,) + o(xy),
G(Zd) = a(xd) + G(yd),
5(2,) = AXp)5(a) + A)5(xp) + App)s(xg) + Axg)s(n) + Hzp),
5(z9) = Ax)s(0a) + Aa)s(xa);
(i) if z = f(x x) and there is no common factors between x, and y, or between p, and x, , then
- E’l EJ’I—A‘
Z ==

Zg X

where
Azp) = Ax2)AVp),
A(zg) = Ax)Apa),
a(z,) = 1 + o(x,) + o(yy),
o(zg) = o(xg) + o(¥y),
S(Zn) = 'l(xn)s(yn) + 'l(yn)J(xn) + A(Zn)1
5(zz) = Axg)s(a) + A0)s(xa);

(i1) if z = fI(x/y) and there is no common factors between x, and p, or between x, and y, , then

X040
j’. nfd

Y
1}
g_«ul;«
H

where
Az,) = Axp) A1),
Mzg) = Ax)A(Vn),
a(z,) = o(x,) + o(yy + 1,
o(zg) = o(xg) + o(yp),
S(Zn) =)*(xn)s(yd) + 'l(yd)s(xn) + A(Zn)v
85(2g) = Axg)s(p) + A(p)s(xy).

Proof. First we apply (2.1) to each case and obtain

z=lx#y) = (x#pA, #e{+,—,x,/[}.
The results can then be obtained easily by using (2.3) and (2.4). Q.E.D.

Often one needs to add up an extended sum given by

k A i k
A “n A
(2.6) z= in=T=T Zni-
=1 24 24 i1

The order of summation certainly has to be specified. One would like to select an order to mini-

mize the incurred additional error complexities of the final computed z. We consider the following

four strategies.

If the items are added rccursively in parallel by divide-and- conquer, then the strategy is called

left-heavy if

IS Fay A
zZ = Zl + 22
where
k21 k
I A
g = Xp 5= Xi
=1 i= Tkj21 +1

Similarly the strategy is called right-heavy if

Lk/2] k

A N A N N

Z=Z3+24, 2y = in, 24 = Z X;
i=1 i= k2] +1

If the items are summed up in sequential order, then we have the cornmon strategies of left-

to-right or right-to-left. We have the following uscful lemma:

LLemma 2.3 Given (2.6) and it is desired to find

k
2=) x) =2
i=1 Zd
where
k
Zy =ﬂ(22"i)’
i=]
222 = 270G = 27000 = - = 2220,
(B +k—1< 0@y +k—1<0(Z3) +k—2< .. <o(Zy) + 1,
then

k
@) Az,) = ,3.(2,,) = Zl(é\ni) regardless of the strategy chosen,
i=1
[Mog k] if the strategy is right-heavy,
A 1 1 -
i olz) = h _ J Llogk] if the strategy is left-heavy,
(@) o(z) = olem) +w where w k — 1 if the strategy is right-to-left,
1 if the strategy is left-to-right.

k k A . . .
A 2" =24 if the strat left-to-right,

(i) s = Y s +4 5 ~DAEm) e srategy is [etonight,
[1+ (2k — 3)2°7]4(z,,) if the strategy is right-to-left,

i=1

k k
@) Y 53 + Llog)27 A3) < s(z) <) s(Bn) + og K127 2(5,0)
i=1 i=1

if the strategy is either left-heavy or right-heavy.

Proof. The results for A(z,) are obvious. For error complexities consider first the sequential

strategics. If the strategy is left-to-right , then we can easily obtain
2, =2 A 4 2 A 42,

Applying Lemma 2.1 to the above equation, we obtain
o(zp) =max(c(Z,) + k— 1, o(Z)+k—1, .. ,0(Zu)+1)
= O'(an) +1

by assumption. Also
k
A A N a
s(zn) =) 55 + (k= DAGn) + (k= DAG) + . + (D)

i=1

k
= D55 + 2~ 2)

i=1

by simplification. Hence the theorem is true.

If the strategy is right-to-left, then we have

A

=t A + o 42, A 45,00
By repeated application of Lemma 2.1 we have certainly
0(2,) = o(Zp) + k= 1.

Also

k
5(zn) = Z‘r(é\ni) + A(é\nl) + 2'1(2):2) +..+ (k - 1)[’]‘(‘%1,1(—1) + l(énk)]

i=1

which can also be simplified to the desired form. Hence the theorem is true in this case. For the

parallel strategies, the computed z, can be expressed as
Zy =2, 4 5, N2 4 B A

where
Ji = Mogkl = j, = ... 2 j = Llog k] if the strategy is left-heavy,

J1 = Llog l<ph<..<jp= rlog k] if the strategy is right-heavy,

Now if the strategy is right-heavy, it is obvious that

o(2,) = o(z,,) + [og k).

If the strategy is left-heavy, then by assumption we have

o(Z,) + Logkl] = o(z,) + Llogk)] + k—i=o(Z,) + Nog k] for i<k

Hence
0(2,) = 0(Z,) + |log k] .

The cumulative error complexity results are obvious. This completes our proof. Q.E.D.

Now from the results of Lemma 2.3 we see obviously that o(z,) will be minimal if the strategy
1s left-to-right. For s5(z,) we see that
2% —2< [og K127 < [1 + (2k — 3)2"2], for k>3 or k= 2.

Furthermore for & = 3 then we have

Hence

,,lAz + 9,,2A2 + Z,3A if the strategy is left-heavy,
A+ anAz + 9,,3A2 if the strategy is right-heavy.

A
Z,
A

6).(9,,1) if the strategy is left-heavy,

71(9,”) if the strategy is nght-heavy,
61(2,,0 if the strategy is left-to-right,
7A(Z,,) if the strategy is right-to-left.

5(2p) = 5(Zp1) + S(Zg) + 5(2,3) +

Thus the left-to-right strategy gives us, in all cases, the minimal cumulative error complexity also

in the computed result. We conclude with the following theorem:

Theorem 2.1 If (2.6) is to be computed and the conditions specified in Lemma 2.3 are sat-

isficd, then one should choose the strategy left-to-right in order to minimize both the maximum

and cumulative error complexity of the computed extended sum.

3. Inverse Decomposition Methods

To find the inverse decomposition, one applies a sequence of clementary trasformations to
the matrix A4 so that zeroes are created in the lower and upper parts of the matrix. The final reduced
matrix is of course the identity matrix so that an implicit 4-! can be obtained as a product of the
scquence of elementary matrices which can then be applied to b to obtain the desired solution
x=A"'h . In general a large collection of methods can be classified as the usual triangular de-
composition of 4 into a product of lower and upper triangular matrices followed by explicitly or
implicitly inverting the calculated triangular matrices. To see this consider the diagonalization of
an N x N matrix. We shall assume that pivoting is not necessary. The Gauss-Jordan mecthod

would create a sequence of matrices C,, G, ... and Cy such that

N

CN C2C1A =D ’ C':= IN— Z C.‘/.iejeir
J=1,j#i

where /, and e represent the N x N identity matrix and the transpose of the i-th column of the
identity matrix , respectively. The matrix C, is chosen such that the transformed matnix
CC, _,...C,A will have all its off-diagonal elements of the first ; columns zeroed. It is also obvious

that the matrix C, depends on the previously gencrated C,_,, C._,, ..., C, and 4. Now C, can be ex-

pressed as

N
. T
C=LUi=Uly, Li=1y- Z Gicgep » Up=1Iy— Zcﬁcjﬂ'
J=i+1 J=1

where U, and L, represent, respectively, the upper and lower part of C,. Furthermore we can easily

show by induction that

CN"' CzC] = UN"’ U3U2LN_1 .o lQL]

Hence

U'L'"4=D, U'=Uy..U3Uy, L7 =Ly, ..L,L,.

Since the steps in L-'4 describe the elimination stage of the Gaussian Elimination method in con-
verting 4 to an upper triangular form and the subsequent U-!'(L-'4) is the result of a forwurd
climination process to create zeroes in the upper triangular L-'4 by columns, the Gauss-Jordan
mcthod is thercfore numerically equivalent to the elimination stage of Gaussian Elimination
method followed by a forward-elimination process to diagonalize the intermediate upper triangular
form. More precisely, the Gaussian Elimination method explicitly finds a matnix L whose inverse

L-', in implicit product form, is used to reduce the matrix 4 to an upper triangular matrix U such

that

A=LU, L7'4=U.
The Gauss-Jordan method creates the same L and an explicit unit-diagonal upper triangular matrix
M such that
ML™'4=D.

Henceforth we shall restrict our attention to the class of methods by which the matrix 4 is

decomposed first into a product of lower and upper triangular matrix in one of the following two

forms:

(3.1a) A=LU

PR

Il

(3.1b) A

where [and R are unit-diagonal lower and upper triangular matrix, respectvely; and 7 and U are
general lower and upper triangular matrix, respectively. Once the matrix 4 is decomposed, then

L, U, P, and R can be explicitly or implicitly inverted so that 4-! can be obtained.

Expanding the products in (3.1a) and (3.1b) explicitly, the decompositions can be obtained

by the following rccursive equations:

S(ag;— Zlktulj 1<k<j<N,

(3.1al)
Z,u,,)/ I<i<j<N,
P =S1(ay ~ ijxrtk)v I<k<j<N,
(3.1b1) -
ry=Na5~ Y pargllpy), 1<i<j<AN.
=1

The cquations in (3.1al) simply say that any u,; can be computed as soon as the k-th row of L and
the first k-1 clements of the j-th column of U arc available, and any /, can be computed as soon
as the first i — | clements of the j-th row of L and the i -th column of U are available. Lquation
(3.1b1) can be interpreted simularly. The only freedom left to an algorithm designer is the order in
which the suinmations in (3.1al) and (3.1b1) should be excuted. We shall call an order optimal if
We have the

the computed result has the minimal maximum and cumulative error complexitics.

following theorem:

Theorem 3.1 Let the given matrix 4 be such that

a]l=C1t={1,0,0}, EIJ=C1={]’O’0}’ (ll/’);}é(l,l)

11

The optimal order to compute the summations in (3.1al) and (3.1b1) is the left-to-right strategy for

their evaluation using the explicit expressions given by

(3.12) Uy = f1(ayj— lytayj = la&oy = - = le gyt j)» 1 SK<J<N,
Jdac . . .

Li=f1((ay — by — Dgwgy — . = by), 1<i<j<N

(.162) P =S~ Pprie— Pk — - — Pig—iTk—1 4) 1 SAS<N,
T ’ij=/7(@G — Pahy— Pilyj — - ‘Pi,i—l’i—l,j) , 1<i<j<N

and the computed u,;, [, , p, , and r; satisfy

_ _ th _ _ Ck . '
Uk = Prk = C1aCos ... Cp_1» ! ukj _R/-k - CixCyn ... Cpp 1 ’ k+1 sJj= A’
=r, = <N

F=y= Cx ’ 1< i<j=

where

Chatr = {MCp10) o (Chpro)s Sy 12)} = gy = (AUChyr)s (1) S(C40)} = a3,

A3=A+A% 1<k<N-L

Proof. See Appendix 1.

By Theorem 3.1 we see that all variations of the class of methods for decomposing A4 into
LU or PR are equivalent among those methods of their respective class in terms of our complexity
mcasures as long as the left-to-right strategy is adhercd to in the evaluation of (3.1a2) or (3.1b2).

Two varations each for the decompositon of A into forms given by (3.1a) and (3.1b) are listed

below:

Algorithm G {Gaussian elimination for 4 = LU}

fori=1toN—1do
forj=i+1t0o Ndo
l'i=ﬂ(ajz/aﬁ)
fork=i+1to N do
ajk=ﬂ(ajk—4'ixa:k)
fork=1to Ndo
forj=kto Ndo

Uy = Ay

12

Algorithm DI. {Doolittle method for 4 = LU}

forj=1to N do
fori=1toj— 1__({0
1}: =ﬂ((aji - gljﬁulu)/l‘u)
for k=j10 Ndo_

u,=fl(a,— &)

l-l

Algorithm G1 {Gaussian Elimination for 4 = PR}

fori=1to N-1do
fork=i+1to Ndo

ra =1 a.a

forj=i+1to Ndo

,k—ﬂ(a,k a; X ry)
fork=1to N do
for j=k to Ndo

P = 4

Algonthm CR {Crout method for 4 = PR}

fork=1to Ndo
forj=1to k do

j-1

pk/ =ﬂ(akj - glp/(mrmj)
forj=4k+1to Ndo

k-1
rkj =ﬂ((akj - glpkmrmj)/pkk)

We are now rcady to find the inverses of L, U, P, R either implicitly or explicitly. Given £,

the product form of L-! can be obtained without additional computation as

N
(3.2a) LG =Lty o L LT =1y) heel, 1<isN— 1,
i—1
~1 -1 T ;
(32b) LDL LN—-lr r o Ll', =1N"‘ [l_]elej y 2<i<N.
j=1

On the other hand, one can also obtain explicitly a lower unit-diagonal matrix M such that

ML =1, and

(3.2¢) Li=My o My_y oo My=1Iy— ij,c;,e, L l<isN—1,
J=i+1

i-1
(3.2d) Lt =My .. My, My=Iy— Y mjeel, 2<i<N.
Jj=1

Note that (3.2a), (3.2b), (3.2¢), and (3.2d) can be regarded as methods creating zeroes in the given

L by column-wise forward , row-wise forward, column-wise backward, and row-wise backward

elimination, respectively.
Solving for ML = I,, we find that

k-1

mi+k,i=ﬂ(1i+k,i— Z"li+k,i+jli+j'i), I<k<N-1, I<i<N-k
J=1

In other words, m,,,; depends on those elements of the (i + k) -th row of M to its right, as well as

1

[.+, and thosc above it in the i-th column of L. A proper algorithm is the following:

Algonthm M

fork=1to N—1do
fori=1t0o N—kdo
Jj=i+k
m, =JfI(6.' - m,u-x’;—n.i e mj.m[m..)

We have the following theorem:

Theorem 3.2a Given L whose error complexities satisfy Theorem 3.1, then the optimal or-
der to find M using Algorithm M is again the left-to-right strategy for the summations. The com-

puted A/ has error complexities given as

k k
_ ~k~17
Moy = (nci+j—1 JAiz A/ Hci+j—l')-
j=1 J=1

Proof. See Appendix Il.

14

Since L' is applied to 4 and L-'4 = U, the same operations need to be applicd to the nght
hand side vector b in solving 4x = b so that the reduced system Ux = fcan be solved later where
f= L-'b. One natural question is whether (3.2a) through (3.2d) are cquivalent in the sense that the
computed fusing any of them will have the same error complexities. For (3.2a) and (3.2b) this is
true as we can simply augment 4 with b as its (N + 1)-st column and a decomposition of 4 = LU
can be performed with U being a trapezoidal matrix having f as its last column. I’of (3.2¢) and

(3.2d) the results of Theorem 3.2a can be applied and we can easily obtain the following theorem

by induction:

Theorem 3.2b I the given right hand side vector b 1s such that E = {1,0,0}, then the com-

puted

S=/(L7"b)

using any one of (3.2a) through (3.2d) is such that

provided the summations uscd to evaluate f; in (3.2b) and (3.2d) are carried out using the left-to-

right strategy in the following expressions:

(3.2d1) Si=/1(b— m,-',-_lb,-_l - m,-_,~_2biu2 — = myby), 1<i<N-—- 1L

To find P-! the situation is similar. Two different forms of 2! can be found without addi-

tional cffort:

(3.3a) PGl =Dy'PyL, ... DT PIDTY,
-1 —~1 p—1 =1 p—1 -1
where

i—1

AV
T T p-l T p-1 T
Di=1Iy—ce +lhee . P =1Iy— ijiejei v Py =1N"'vﬁf)i'eiej .
J=itl J=1

Using an additional O(N?) divisions one can also obtain the following two forms easily:

N
— —1 p— —1 -1 ’ T .
(3.3¢) Poli=D7'PL o P PR =Ty~) peel 1<i<N- 1,
J=i+1
i—1
(3.3d) Pap=DT"PRb Py PR =Iy—) Py, 2<i<N
=
where

Pui=/1(pulp;), D=diag[py, ..., Pan]

Note the above are forward type of algorithms. In (3.3a) and (3.3b) P is gradually reduced

to an identity matrix, whereas in (3.3¢) and (3.3d) it is reduced first to a diagonal matrix. If we

pre-multiply P first by D-!, then the new matrix becomes a unit-diagonal lower triangular matrix

and four new forms similar to (3.2a) through (3.2d) can be derived. By Theorem 3.2b we know that

they are equivalent among themscelves. We shall only give one of them in detail:

N

-1 -1 —1py—1 =1 i 4

3 PGra= Py 1 ProD " P = Iy — Z P e
(3.2¢) J=itl

Pi=/1(pulpy), 1 <i<N—1

Finally P can also be reduced first to diagonal matrix by backward type of algorithms. We

have

N
- — T .
(3.3) Pol=D7'Q1 e Onrer Qe=Iy—) e’ 1<i<N-1,
J=it1

16

i—1

-1 -1 T . ’

(33g) PQ, = D Q)r QNr’ Qirzllv—zqgfiej , 2SISN
Jj=1

where

Gipbg =S Pipki = Dishiok=1Pitk—14 = = — Dkt 1Pir1,i)P)s

3.3h
(3-3h) I<k<N-1, 1<isN-k

The following theorem can be proved using Lemma 2.3 and induction:

Theorem 3.3

(i) Given the matrix P whose error complexities satisfy Theorem 3.1, then the optimal order

to find Q using (3.3h) is the left-to-right strategy for the summations. The computed Q has crror

complexitics given as

Fipij= Mgy 1Sk<SN—1, 1<i<N-k

(1) If the given right hand side vector b is such that l;, ={1,0,0}, 1 <i< N, then the com-

puted

g=/1(P7'b)

using any one of (3.3a) through (3.3g) is such that

Ev=CnBlcye, Bi=Ty, 1<isN-—1

) provided the summations used to find g; in (3.3b), (3.3d), (3.3g) arc carried out , respectively, using

the left-to-right strategy in each of the following expressions:

(3.3b1) &=/1((b—pagy — - — Pii18&-1)IPi), 1<i<N,

17

(3.3g1) &=S1((b;— g ;_1biy— .. —dquby)lp;), 1<i<N.

Methods for finding R-! and U-! are similar to those for finding L-! and P!, respectively.

We shall sumply list them and give the resulting theorems without proofs.

Methods for R-1:

i—1

(3.4) Ryt =Ry . RRY, RT' =1y— Y rige’, 2<i<A,
j=1

AV

—1 -1 ~1 -1 T o
(3.4b) Ro =R R3L, . R =1y~) reel, 1<isN—1,
j=it1

i-1
(3.4¢) Rt =M yeMiye, Mip=1Iy—) miyeel, 2<i<N,
j=1

N

(3.4d) R =My My, My=Iy— Y miyeel, 1<isN—1

where M’ is a unit-diagonal upper triangular matrix computed by the following formula:

’ _— ’ _ —m
Miivk =/1(Viivk — M i Tivtivk — - = ik lidk—1 4k) »

34
(3-4¢) l<k<N—-1, 1<i<N—*k

Theorem 3.4

(1) Given R whose crror complexities satisfy Theorem 3.1, then the optimal order to evaluate

(3.4e) is the left-to-right strategy. The computed M’ is such that

(1) given g whose error complexities satisfy Theorem 3.3, then the computed

x=f1(R"'g)

using any one of (3.4a4) through (3.4d) is such that

CiCipy N —n_
%= et — AR, 1<i<N

Ci‘ci-f-l’ e Cpmx

RS

provided the summations used to evaluate x, in (3.4b) and (3.4d) are carnied out in optimal order

of the left-to-right strategy , respectively, using the following expressions:

(3.4bl) Xn=gn, =J1(g—rinXN— o — T Xig1)y 1SN,

(3.4d1) x;p=J1(g;— M ;41841 — - — M iNgN), 1IN

Methods for U-!:

—1 —1 -1 -1 -1
(3.5({) UBI = DUI U2C‘DU2 ver L//VCDU/V’
- ~1 ~1 - -1 -l
(3.5b) Up = Do Ui . Do Unty Doy
where
i~ N
T y - T -1 T
Dyi=1Iy—ce +uee; , U =/N*Z“jiejei v Uy =1Iy— Z U€C; -
j=1 J=it1
(3.50) Ul =D5' U3} UL UZ =1y~ Zu’ eel, 2<i<N,
N
< —1,,—1 T .
(3\d) (jB4_DU Ulr’ L/N 1,;,(]# —-IN Zujeej]SISN—I,
J=i+1
where

l/jl =ﬂ(ulj/L{[j) [DU = diag [u” y see y uArN].

3.5 Upl= Ul URLDG, UZ' =1y~ Zu el 'y =f1(uuy), 2<i<N.
T
(3.50) 5 O e Oaer =Ty~ Zqﬂeje, , 2<i<N,
5
- - 4 / 7 T H
(3.59) Und = D3’ Oy Qs Qio=In=) qyee) , 1<isN—1
J=i+1

where @’ is a unit-diagonal upper triangular matrix computed by the following formula:

(3.5h) ik =S (W e — Cijprligrjok — = — 4 igrk=1 k=1, ik Wip i irr) -

Theorem 3.5

(i) Given the matrix U whosc error complexities satisfy Theorem 3.1, then the optimal order

to find Q' using (3.5h) is the lcft-to-right strategy for the summations. The computed Q' has crror

complexitics given as

i+k—1

Fie=([] 6)85 Bleyge, 1<k<N—1, 1SiSN-k
J=i

(i1) Given fwhose error complexities satisfy Theorem 3.2b, then the computed

x' =f1(UY)

using any one of (3.5a) through (3.5g) is such that

20

provided the summations used to evaluate x’; in (3.5b), (3.5d), (3.5g) are carricd out, respectively,

using the left-to-right strategy in each of the following expressions:

(3.5d1) Xi=A@lu) i = A~ ipyn — o~ Wi), 1<IEN,
(3.51) i =fI((fi— iy — - — Cinfw)lw) 1<i<N.

By Theorem 3.5 we conclude that the class of inverse decomposition methods based on
finding the triangular factors of the matrix 4 followed by explicitly or implicitly inverting the tn-

angular factors are equivalent among themsclves in terms of our error complexity measures.

References

(1] J.H. Wikinson, Rounding Errors in Algebraic Processes, Englewood Cliffs, NJ: Prentice

Hall, 1963.

[2] V.B. Aggarwal and J.W. Burgmeier, A round-off error model with applications to arith-

metic expressions, SIAM J. Computing, 8(1979), pp. 60-72.

Appendix 1. Proof of Theorem 3.1

We prove by induction on k and i. For k =i=1 we have

wy=a;, 1<j< N, by=Ml(ayu) =ayblayy, 2<t<N.

Hence
17“=C1:,ITJ'U=C1,ZS]SN,

In=a3,A1a, = cAlejs, 2<t<N

and the theorem is true. Assume the theorem is true for k=i=r— 1. For k=i=r we assume

that in the computation of u,; the given /, and u, for | <t <k — 1 are calculated by the optunal

order and so w, can be considered as the computed result of

z=py 0+ o APk 1=, Y = Uyy), 1<t<k-1

Now by assumption

— 7 e — 1
h= €1y [k’= CIA/C" ! uU-.__ CltC2x C[_]t)
Hence
-2
¢, A”
I<t<k-1

r=a, y’+1 = Ci*Cyx ... Cpx '

Now if exact additions were possible, then

where

s = _ = _ X2
Zqg= CprCos o Cp_yoy Zy) = CC1#Cox oo €y 3 2y 1y = CCC 412 Crynx o G 1xA”, 1< U<k — 1.

By dcfinition we have

= = A, = 7
Crprr = Gy = CCA13 = ¢€{2,3,4}.

Henee

Aepprs) = M) = 224c) s olcrys) = alcrpr) = 20(c) + 3> alc) + 1.

Applying the above equations to Z,,,, and Z,, we have

/’-(an) _ A(ZH.H-I) . }-(CI)
A(Zn]) -)'(31:1) B '12(61—1)

(2, 141) — 9(2p) = o{(¢) — 20(¢;_) =3> L

=2

’

The above cquations satisfy the conditions of Lemma 2.3, hence by the lemma the best strategy in

cvaluating

= +y+ .. +yg)

is by the lcft-to-right strategy. Thus by Lemma 2.3 and the induction assumption we have

- o k=1 | = wk~1 R

- =3
1D Cr-1Ck—1D i

CiaCys ... Cp_o* CpaCox ... Ck_lx - CiaCox ... Ck__lt .

Similar rcasoning can be uscd to show the remaining part of the theorem for /s, This completes

our proof. Q.E.D.

Appendix 1. Proof of Theorem 3.1

We prove by induction on k and i. For k =i=1 we have

uj=ay, 1<j<N;, I =flla,|u,) =a,Ala,, 2<t1<N.
Hence
17“=C]t,l,71j=cl,25jSN,

[” - (7[1-A—/E” = (‘]Z/Clt y 2 S lS .’\,

and the theorem is true. Assume the theorem is true for k=i=r— 1. For k=i=r we assume
that in the computation of u, the given /, and u, for 1 <t <k — 1 are calculated by the optimal

order and so u,, can be considered as the computed result of

z=p1+n+ o n=ay, v =AGuy), 1<t<k-1

Now by assumption

- — C
— —_ T .
1=¢6¢, [kf - CIA/Cr‘ ! u(i - CixCoyx ... Cp_qx :
Hence
) e
; I<et<k-—1.

where

= _ = = _ <2
Zg = CpeCys .. Cr_1%» Zn1 = C1C1«Cyx ... Cp 1% ,Zn,,_*_] = C[CIC[+]gC[+2t . Ck_ltA , 1 <t< k- 1.

(8]
o

By dcfinition we have

- = O =)
Crpps = Cry1 = A3 = ¢c,{2,3,4}.

Henee

(Cpprn) = Aeppy) = 225(c) s o(Cppye) = o(cryy) = 20(c) + 3> o(c) + 1.

Applying the above equations to Z,,,, and z,, we have

n,

Az,3) _1 'l(zn.rﬂ) _ Ac)
Z(Z,”) ,)'(zz:t) lz(Cl__])

G(Zrl,i+1) —o(zy) = a(c) — 20(C,~_]) =3>1.

=2

The above equations satisfy the conditions of ILemma 2.3, hence by the lemma the best strategy in

evaluating

=1 +y+ .. +y)

is by the lcft-to-right strategy. Thus by Lemma 2.3 and the induction assumption we have

73 = wk— - k-1 - —2 e
=G AT +JhAT + + 7 AP)+ FA

~ —=3
Cr—14 Cp1Ck1 A C

ClnC2x Ck__zg CraCon ... Ck__l:u - CiaCox ... Ch_1* .

Similar reasoning can be used to show the remaining part of the theorem for //'s. This completes

our proof. Q.E.D.

NASA Report Documentation Page

National Aeronautics and
Space Administration

. Performing Organization Name and Address

1. Report No. NASA TM-102036 2. Government Accession No. 3. Recipient’s Catalog No.
ICOMP-89-11
4. Title and Subtitie 5. Report Date
On the Equivalence of a Class of Inverse Decomposition Algorithms May 1989
for Solving Systems of Linear Equations 8 Performing Organization Code
7. Author(s) 8. Performing Organization Report No.
Nai-kuan Tsao E-4785
i 10. Work Unit No.
i 505-62-21

]) . 11. Contract or Grant No.
National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191 13. Type of Report and Period Covered

. Sponsoring Agency Name and Address

Technical Memorandum

National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546-0001

. Supplementary Notes

Nai-kuan Tsao, Wayne State University, Detroit, Michigan 48202 and Institute for Computational Mechanics in
Propulsion, Lewis Research Center (work funded under Space Act Agreement C99066G).
Space Act Monitor: Louis A. Povinelli.

. Abstract

A class of direct inverse decomposition algorithms for solving systems of linear equations is presented. Their
behavior in the presence of round-off errors is analyzed. It is shown that under some mild restrictions on their
implementation, the class of direct inverse decomposition algorithms presented are equivalent in terms of our
error complexity measures.

|

17.

Key Words (Suggested by Author(s)) 18. Distribution Statement
Gaussian elimination, Gauss-Jordan method; Triangular Unclassified — Unlimited
decomposition; Error complexity; Doolittle method; Subject Category 64
Crout method

|
!
1
|
[
|
[

19.

Security Classif. (of this report) 20. Security Classif. (of this pags) 21. No of pages 22. Price”
Unclassified Unclassified

NASA FORM 1626 OCT 86 *For sale by the National Technical Information Service, Springfield, Virginia 22161

